
1. 

a. Describe the significance of t-test. 

Ans. t-test will be performed when the standard deviation is unknown. It is a parametric test. 

b. Write the R code for two sample t-test 
 
Ans. nsmk<-lung[lung$Smoker==0,]  
        smk<-lung[lung$Smoker==1,]  
        res<-t.test(smk,nsmk) 
        res 
c. What is Machine Learning? 
 
Ans. Machine Learning is getting of  knowledge by study, experience or being taught. 
 
d. Differentiate between Supervised learning, Unsupervised Learning? 
 
Ans. Supervised learning is where you have input variables (x) and an output variable (Y) 
and you use an algorithm to learn the mapping function from the input to the output. 
Unsupervised learning is where you only have input data (X) and no corresponding output 
variables. 
 
e. What HDFS contains? 
 
Ans. Name node 
        Data node 
        Secondary name node 
 
f. Describe Map Reduce? 
 
Ans. MapReduce job usually splits the input data-set into independent chunks which are 
processed by the map tasks in a completely parallel manner. The framework sorts the outputs 
of the maps, which are then input to the reduce tasks.  
 
g. Significance of Secondary Name Node in HDFS? 
 
Ans. Periodic merge of Transaction log 
        Does the check pointing. 
 
h. Write applications of Map Reduce? 

 distributed grep 
 distributed sort 

 
i. What Hadoop eco system contains? 
 
Ans. Hadoop Distributed File System(HDFS) 
        MapReduce 
 
 



j. Significance of i)Job Tracker ii)Task Tracker 
 
Ans. Job Tracker - Schedules jobs and tracks the assign jobs to Task tracker.  
        Task Tracker - Tracks the task and reports status to Job Tracker.  
 
k. Describe Fail over and Fencing? 
 
The transition from the active namenode to the standby is managed by a new entity in 
the system called the failover controller. 
The HA implementation goes to great lengths to ensure that the previously active namenode 
is prevented from doing any damage and causing corruption—a method known as fencing. 
 
l. What is YARN ? 
 
Ans. YARN stands for Yet Another Resource Negotiator. It’s a framework introduced in 
2010 by a group  Yahoo!. This is considered as next generation of MapReduce. YARN is not 
specific for MapReduce. It can be used for running any application. 
 
     UNIT-1 
 
2 a. Explain the characteristics of Big Data           
 
 
 
 
 
 
 
 

 



• Volume: The Big word in Big data itself defines the volume. At present the data 
existing is in petabytes (1015) and is supposed to increase to zettabytes (1021) in 
nearby future. Data volume measures the amount of data available to an organization, 
which does not necessarily have to own all of it as long as it can access it. 

• Velocity:  Velocity in Big data is a concept which deals with the speed of the data 
coming from various sources. This characteristic is not being limited to the speed of 
incoming data but also speed at which the data flows and aggregated. 

Variety: Data variety is a measure of the richness of the data representation text, images 
video, audio, etc. Data being produced is not of single category as it not only includes the 
traditional data but also the semi structured data from various resources like web Pages, Web 
Log Files, social media sites, e-mail, documents. 
Value: Data value measures the usefulness of data in making decisions.Data science is 
exploratory and useful in getting to know the data, but “analytic science” encompasses the 
predictive power of big data. User can run certain queries against the data stored and thus can 
deduct important results from the filtered data obtained and can also rank it according to the 
dimensions they require. These reports help these people to find the business trends according 
to which they can change their strategies.  
Veracity: it refers to the messiness or trustworthiness of the data. Today quality and accuracy 
of data are less controllable (hash tags, abbreviations, typos and colloquial speech) but 
technology now allows us to deal with it. How to find high-quality data from the vast 
collections of data that are out there on the Web. 
Complexity: Complexity measures the degree of interconnectedness (possibly very large) 
and interdependence in big data structures such that a small change (or combination of small 
changes) in one or a few elements can yield very large changes or a small change that ripple 
across or cascade through the system and substantially affect its behavior, or no change at all 
 
2b. Describe the applications of Big Data? 
 
Amazon.com handles millions of back-end operations and have  7.8 TB, 18.5 TB, and 24.7 
TB Databases. 
 Walmart is estimated to store more than 2.5 PB Data for handling 1 million transactions per 
hour. 
The  Large  Hadron  Collider  (LHC) generates 25 PB data before replication and 200 PB 
Data after replication. 
Sloan  Digital  Sky  Survey ,continuing at a rate of about 200 GB per night and has more than 
140 TB of information.  
Utah Data Center for Cyber Security stores Yottabytes (1024). 
 
3 What is Hypothesis Testing? Explain the following terms with examples? 
 
 
 
 
a)Null Hypothesis:  The hypothesis to be tested is called the null hypothesis and given the symbol 
H0.  
The null hypothesis states that there is no difference between a hypothesized population mean and 
a sample mean. 
 It is the status quo hypothesis. 
For example, if we were to test the hypothesis that college freshmen study 20 hours per week, we 
would express our 



null hypothesis as: 
H0 : μ = 20  
 
b)Alternative Hypothesis:  We test the null hypothesis against an alternative hypothesis, which is 

given the symbol Ha. The alternative hypothesis is often the hypothesis that you believe yourself! It 

includes the outcomes not covered by the null hypothesis. 

 In this example, our alternative hypothesis would express that freshmen do not study 20 hours per 

week: 

      
  
The result of a hypothesis test: 
     ‘Reject H0 in favour of HA’  OR   ‘Do not reject H0’ 
 

c) Degrees of Freedom:  Degrees of freedom are essentially the number of samples 
that have the ’freedom’ to change without affecting the sample mean. 
 
d) P value: you will receive a p-value as part of youroutput.  
The p-values is the likelihood of observing that particuluar sample value if the null 
hypothesis were true. 
Therefore, if the p-value is smaller than your significance level, you can reject the null 
hypothesis. 
 
e) How to calculate t test value? 
 

1. define null and alternative hypothesis. 
2. take alpha. 
3. calculate degrees of freedom. 
4. state decision rule. 
5.Calculate test-statistic. 
6. Take result 
7.conclusion. 
 
f)Type- 1 error & Type-2 error:  
 
A Type I error is when we reject the null hypothesis when it is true 
 
Type II error is when we do not reject the null hypothesis, even when it is false. 
 
    UNIT-2 
 
4 a. i) Apply the Hierarchical clustering using Single Linkage method for the following data, 
construct Hierarchical Tree. 
ii) Write R code for Hierarchical clustering using single linkage method for the   following 
 

 
  

BA FI MI NA RM TO 

BA 0 662 877 255 412 996 



   
 
 
 
 
 
  
 
 
 
 

 
 
 
 

Problem.: 

i) Let’s now see a simple example: a hierarchical clustering of distances in kilometers 
between some Italian cities. The method used is single-linkage. 

ii) Input distance matrix (L = 0 for all the clusters): 

  BA FI MI NA RM TO 

BA 0 662 877 255 412 996 

FI 662 0 295 468 268 400 

MI 877 295 0 754 564 138 

NA 255 468 754 0 219 869 

RM 412 268 564 219 0 669 

TO 996 400 138 869 669 0 

iii) The nearest pair of cities is MI and TO, at distance 138. These are merged into a 
single cluster called "MI/TO". The level of the new cluster is L(MI/TO) = 138 and 
the new sequence number is m = 1. 

iv) Then we compute the distance from this new compound object to all other objects. 
In single link clustering the rule is that the distance from the compound object to 
another object is equal to the shortest distance from any member of the cluster to 
the outside object. So the distance from "MI/TO" to RM is chosen to be 564, 
which is the distance from MI to RM, and so on. 

v)  
vi) After merging MI with TO we obtain the following matrix: 

  BA FI MI/TO NA RM 

BA 0 662 877 255 412 

FI 662 0 295 468 268 

MI/TO 877 295 0 754 564 

NA 255 468 754 0 219 

RM 412 268 564 219 0 

vii) min d(i,j) = d(NA,RM) = 219 => merge NA and RM into a new cluster called 
NA/RM 

FI 662 0 295 468 268 400 

MI 877 295 0 754 564 138 

NA 255 468 754 0 219 869 

RM 412 268 564 219 0 669 

TO 996 400 138 869 669 0 



viii) L(NA/RM) = 219 
ix) m = 2 
x)  

  BA FI MI/TO NA/RM 

BA 0 662 877 255 

FI 662 0 295 268 

MI/TO 877 295 0 564 

NA/RM 255 268 564 0 

xi) min d(i,j) = d(BA,NA/RM) = 255 => merge BA and NA/RM into a new cluster 
called BA/NA/RM 

xii) L(BA/NA/RM) = 255 
xiii) m = 3 
xiv)  

  BA/NA/RM FI MI/TO 

BA/NA/RM 0 268 564 

FI 268 0 295 

MI/TO 564 295 0 

xv) min d(i,j) = d(BA/NA/RM,FI) = 268 => merge BA/NA/RM and FI into a new 
cluster called BA/FI/NA/RM 

xvi) L(BA/FI/NA/RM) = 268 
xvii) m = 4 
xviii)  

  BA/FI/NA/RM MI/TO 

BA/FI/NA/RM 0 295 

MI/TO 295 0 

xix) Finally, we merge the last two clusters at level 295. 
xx)  
xxi) The process is summarized by the following hierarchical tree: 

xxii)  
 

 
ii)  R-code for hierarchical clustering for single linkage method: 
a <- c(0,662,877,255,412,996) 
b <-  c(662,0,295,468,268,400) 
c <-  c(877,295,0,754,564,138) 
d <-  c(255,468,754,0,219,869) 



e <-  c(412,268,564,219,0,669) 
f <-  c(996,400,138,869,669,0) 
p <- rbind (a,b,c,d,e,f) 
p1 <-  matrix(p, 6, 6, dimnames=list(c("a","b","c","d","e","f")), c("a","b","c","d","e","f")) 
p1 <- as.data.frame(p1) 
m <- apply(p1,2,mean) 
n <- apply(p1,2,sd) 
z <- scale(p1,m,n) 
dist1 <- dist(z) 
hcs <- hclust(dist1,method="single") 
plot(hcs, hang= -1) 
 
5 a. Write the R code for cluster analysis on iris data set using K-means algorithm 

iris dataset(Sepal Length, Sepal Width, Petal Length, Petal Width,   Species) 
 

 
 
 
R-code for k-means algorithm using iris dataset: 
 
r1<-iris  
names(r1) 
r2<-r1[,-5]  
names(r2) 
r3<-kmeans(r2,3)  
r3 
table(iris$Species,r3$cluster) 
plot(iris$Petal.Length,iris$Petal.Width,col=r3$cluster) 
 
b. Write the R code for cluster analysis on Lung Capacity data set using  

 K-medoids algorithm.  
LungCapacity data set (Gender, Height, Smoker, Exercise, Age, Lung Capacity)
  

R-code for k-medoids algorithm using K-medoids algorithm: 
 
pamkm<-Lung Capacity 
names(pamkm)  
pamkm1<-pamkm[,-1] 
names(pamkm1) 
library(cluster)  
t<-pam(pamkm1,3)  
t 
table(iris$Species,t$clustering) 
plot(t) 
layout((matrix(c(1,2),1,2)))  
plot(t) 
      
 
 
 



UNIT-3 
 
6 a. Explain HDFS concepts in detail 
 
 
 
HDFS Concepts: 

 Blocks  
 Namenodes and Datanodes 
 Block Caching 
 HDFS Federation 
 HDFS High Availability 
 Fail over and Fencing 

 
1.Blocks  

 File Blocks 
 64MB(default), 128 (Recommended)  

 
2.Namenodes and Datanodes 
 
DataNode is slave machine in Hadoop cluster running the data node daemon.  

A Master called the Name Node . 

The Name Node keep track of the file metadata –which files are running in the system 

and how each file is broken down into the Name Node to keep the metadata current. 

 

3. Block Caching 

 A Datanode reads blocks from disk. 
 Frequently accessed files the blocks may be explicitly cached in the 

 datanode’s memory. 
 By default , block is cached only one Datanode’s memory. 

 

4.  HDFS Federation 

 The Namenode keeps a reference to every file and blocks in the file system in 
memory. 

 It means , on very large clusters with many files, memory becomes the 
limiting factor for scaling. 

 How much memory does a Name Node need ? 
 HDFS Federation  introduced in the 2.x release series , allows . 

 

 
b. Explain the anatomy of how data read from HDFS 
 



  
 The client opens the file it wishes to read by calling open() on the File System object, 

which for HDFS is an instance of DistributedFileSystem (step-1) 
 DistributedFileSystem calls the name node, using remote procedure calls (RPCs), to 

determine the locations of the first few blocks in the file (step 2). 
  For each block, the name node returns the addresses of the data nodes that have a 

copy of that block. 
 If the client is itself a data node the client will read from the local data node if that 

data node hosts a copy of the block 
 The Distributed File System returns an FSDataInputStream to the client for it to read 

data from. FSDataInputStream in turn wraps a DFSInputStream, which manages the 
data node and name node I/O. 

 The client then calls read() on the stream (step 3). DFSInputStream, which has stored 
the data node addresses for the first few blocks in the file, then connects to the first 
(closest) data node for the first block in the file. 

 Data is streamed from the data node back to the client, which calls read() repeatedly 
on the stream (step 4).  

 When the end of the block is reached, DFSInputStream will close the connection to 
the data node, then find the best data node for the next block (step 5).  

 This happens transparently to the client, which from its point of view is just reading a 
continuous stream. 

 Blocks are read in order, with the DFSInputStream opening new connections to data 
nodes as the client reads through the stream.  

 It will also call the name node to retrieve the data node locations for the next batch of 
blocks as needed.  

 When the client has finished reading, it calls close() on the FSDataInputStream (step 
6). 

 During reading, if the DFSInputStream encounters an error while communicating 
with a data node,  



 It will try the next closest one for that block. It will also remember data nodes that 
have failed so that it doesn’t needlessly retry them for later blocks.  

 The DFSInput  Stream also verifies checksums for the data transferred to it from the 
data node. 

  If a corrupted block is found, the DFSInputStream attempts to read a replica of the 
block from another data node; it also reports the corrupted block to the name node.  

 
 
7 a. Explain the components of YARN. 
 
 
 
 

• The problem is solved by splitting the responsibility of JobTracker (in Classic 
MapReduce) to different components. Because of which, there are more entities 
involved in YARN (compared to Classic MR). The entities in YARN are as follows; 

• Client: which submits the MapReduce job 
• Resource Manager: which manages the use of resources across the cluster. It 

creates new containers for Map and Reduce processes. 
• Node Manager: In every new container created by Resource Manager, a Node 

Manager process will be run which oversees the containers running on the 
cluster nodes. It doesn’t matter if the container is created for Map or Reduce 
or any other process. Node Manager ensures that the application does not use 
more resources than what it is allocated with. 

• Application Master: which negotiates with the Resource Manager for 
resources and runs the application-specific process (Map or Reduce tasks) in 
those clusters. The Application Master & the MapReduce tasks run in 
containers that are scheduled by the resource manager and managed by the 
node manager. 
 

b. Explain how YARN runs an application on HDFS? 
 

 YARN provides its core services via two types of long-running daemon: 
a resource manager (one per cluster) to manage the use of resources 
across the cluster, and node managers running on all the nodes in the 
cluster to launch and monitor containers.  

 A container executes an application-specific process with a constrained 
set of resources (memory, CPU, and so on). 

 To run an application on YARN, a client contacts the resource manager 
and asks it to run an application master process (step 1). 

 The resource manager then finds a node manager that can launch the 
application master in a container (steps 2a and 2b). 

 Precisely what the application master does once it is running depends on 
the application. It could simply run a computation in the container it is 
running in and return the result to the client. Or it could request more 
containers from the resource managers (step 3), and use them to run a 
distributed computation (steps 4a and 4b). 

 YARN itself does not provide any way for the parts of the application 
(client, master, process) to communicate with one another.  

 Most nontrivial YARN applications use some form of remote 



communication (such as Hadoop’s RPC layer) to pass status updates and 
results back to the client, but these are specific to the application. 
 

 
 

 
Resource Requests: 

 YARN has a flexible model for making resource requests. A request for a set of 
containers can express the amount of computer resources required for each container 
(memory and CPU), as well as locality constraints for the containers in that request. 

 Locality is critical in ensuring that distributed data processing algorithms use the 
cluster bandwidth efficiently, so YARN allows an application to specify locality 
constraints for the containers it is requesting. Locality constraints can be used to 
request a container on a specific node or rack, or anywhere on the cluster (off-rack). 

 Sometimes the locality constraint cannot be met, in which case either no allocation is 
made or, optionally, the constraint can be loosened. For example, if a specific node 
was requested but it is not possible to start a container on it (because other containers 
are running on it), then YARN will try to start a container on a node in the same rack, 
or,if that’s not possible, on any node in the cluster. 

 In the common case of launching a container to process an HDFS block (to run a map 
task in MapReduce, say), the application will request a container on one of the nodes 
hosting the block’s three replicas, or on a node in one of the racks hosting the 
replicas,or, failing that, on any node in the cluster. 

 A YARN application can make resource requests at any time while it is running. For 
example, an application can make all of its requests up front, or it can take a more 



dynamic approach whereby it requests more resources dynamically to meet the 
changing needs of the application. 
Application Lifespan : 

 The lifespan of a YARN application can vary dramatically: from a short-lived 
application of a few seconds to a long-running application that runs for days or even 
months.  

 Rather than look at how long the application runs for, it’s useful to categorize 
applications in terms of how they map to the jobs that users run.  

 The simplest case is one application per user job, which is the approach that 
MapReduce takes. 

 The second model is to run one application per workflow or user session of (possibly 
unrelated) jobs.  

 This approach can be more efficient than the first, since containers can be reused 
between jobs, and there is also the potential to cache intermediate data between jobs.  

 Spark is an example that uses this model. 
 The third model is a long-running application that is shared by different users. Such 

an application often acts in some kind of coordination role.  
 For example, Apache Slider has a long-running application master for launching other 

applications on the cluster. 
 This approach is also used by Impala to provide a proxy application that the Impala 

daemons communicate with to request cluster resources.  
 The “always on” application master means that users have very lowlatency responses 

to their queries since the overhead of starting a new application master is avoided. 
Building YARN Applications : 

 Writing a YARN application from scratch is fairly involved, but in many cases is not 
necessary, as it is often possible to use an existing application that fits the bill. 

  For example,if you are interested in running a directed acyclic graph (DAG) of jobs, 
then Spark or Tez is appropriate; or for stream processing, Spark, Samza, or Storm 
works. 

 There are a couple of projects that simplify the process of building a YARN 
application. 

 Apache Slider, mentioned earlier, makes it possible to run existing distributed 
applications on YARN.  

 Users can run their own instances of an application (such as HBase) on a cluster, 
independently of other users, which means that different users can run different 
versions of the same application. 

 Slider provides controls to change the number  of nodes an application is running on, 
and to suspend then resume a running application. 

 Apache Twill is similar to Slider, but in addition provides a simple programming 
model for developing distributed applications on YARN.  

 Twill allows you to define cluster processes as an extension of a Java Runnable, then 
runs them in YARN containers on the cluster.  

 Twill also provides support for, among other things, real-time logging (log events 
from runnables are streamed back to the client) and command messages (sent from 
the client to runnables). 

 In cases where none of these options are sufficient—such as an application that has 
complex scheduling requirements—then the distributed shell application that is a part 
of the YARN project itself serves as an example of how to write a YARN application. 

  It demonstrates how to use YARN’s client APIs to handle communication between 
the client or application master and the YARN daemons.  



 
     
 
    UNIT-4 
 

8  Explain how HDFS runs a MapReduce job? 
 
 
 
 
 

 
 Job Submission 
 Job Initialization 
 Task Assignment 
 Task Execution 
 Progress and Updates 
 Job Completion 
 Failures 

 
Job Submission: 

 The submit() method on Job creates an internal Job Submitter instance and calls         
submit Job Internal() on it. 

 Having submitted the job, waitForCompletion() polls the job’s progress once per 
second and reports the progress to the console if it has changed since the last report.  



 When the job completes successfully, the job counters are displayed. Otherwise, the 
error that caused the job to fail is logged to the console. 

 The job submission process implemented by JobSubmitter does the following: 
1. Asks the resource manager for a new application ID, used for the MapReduce jobID 

(step 2). 
2. Checks the output specification of the job. For example, if the output directory has not 

been specified or it already exists, the job is not submitted and an error is thrown to 
the MapReduce program. 

3. Computes the input splits for the job. If the splits cannot be computed, the job is not 
submitted and an error is thrown to the MapReduce program. 

4. Copies the resources needed to run the job, including the job JAR file, the 
configuration file, and the computed input splits, to the shared filesystem in a 
directory named after the job ID (step 3). The job JAR is copied with a high 
replication factor so that there are lots of copies across the cluster for the node 
managers to access when they run tasks for the job. 

5. Submits the job by calling submitApplication() on the resource manager(step 4). 
Job Initialization: 

 The application master must decide how to run the tasks that make up the MapReduce 
job. If the job is small, the application master may choose to run the tasks in the same 
JVM as itself.  

 Such a job is said to be uberized, or run as an uber task. 
 What qualifies as a small job? By default, a small job is one that has less than 10 

mappers, only one reducer, and an input size that is less than the size of one HDFS 
block.  

 Finally, before any tasks can be run, the application master calls the setupJob() 
method on the OutputCommitter. It will create the final output directory for the job 
and the temporary working space for the task output. 
Task Assignment: 

 If the job does not qualify for running as an uber task, then the application master 
requests containers for all the map and reduce tasks in the job from the resource 
manager(step 8). 

  Requests for map tasks are made first and with a higher priority than those for reduce 
tasks, since all the map tasks must complete before the sort phase of the reduce can 
start. 

  Requests for reduce tasks are not made until 5% of map tasks have completed. 
 Reduce tasks can run anywhere in the cluster, but requests for map tasks have data 

locality constraints that the scheduler tries to honor. 
 Requests also specify memory requirements and CPUs for tasks.  
 By default, each map and reduce task is allocated 1,024 MB of memory and one 

virtual core. 
  The values are configurable on a per-job basis via the following properties: 

    mapreduce.map.memory.mb,      
    mapreduce.reduce.memory.mb,      
    mapreduce.map.cpu.vcores  
Task Execution: 

 Once a task has been assigned resources for a container on a particular node by the 
resource manager’s scheduler, the application master starts the container by 
contacting the node manager (steps 9a and 9b). 

 The task is executed by a Java application whose main class is YarnChild. Before it 
can run the task, it localizes the resources that the task needs, including the job 



configuration and JAR file, and any files from the distributed cache . Finally, it runs 
the map or reduce task (step 11). 

 The YarnChild runs in a dedicated JVM, so that any bugs in the user-defined map and 
reduce functions (or even in YarnChild) don’t affect the node manager—by causing it 
to crash or hang. 
The relationship of the Streaming executable to the node manager and the task 
container  

 
Progress and Status Updates: 

 MapReduce jobs are long-running batch jobs, taking anything from tens of seconds to 
hours to run. 

 A job and each of its tasks have a status, which includes such things as the state of the 
job or task  the progress of maps and reduces, the values of the job’s counters, and a 
status message or description. 

 When a task is running, it keeps track of its progress. For map tasks, this is the 
proportion of the input that has been processed. For reduce tasks, it’s a little more 
complex. 
Job Completion: 

 When the application master receives a notification that the last task for a job is 
complete, it changes the status for the job to “successful.” 

 when the Job polls for status, it learns that the job has completed successfully, so it 
prints a message to tell the user and then returns from the waitForCompletion() 
method. Job statistics and counters are printed to the console at this point. 



 Finally, on job completion, the application master and the task containers clean up 
their working state (so intermediate output is deleted), and the OutputCommitter’s 
commit Job() method is called. Job information is archived by the job history server 
to enable later interrogation by users if desired. 
Failures: 
In the real world, user code is buggy, processes crash, and machines fail. One of the 
major benefits of using Hadoop is its ability to handle such failures and allow your 
job to complete successfully.  
We need to consider the failure of any of the following entities: 
Task Failure: The most common occurrence of this failure is when user code in the 
map or reduce task throws a runtime exception. If this happens, the task JVM reports 
the error back to its parent application master before it exits. The error ultimately 
makes it into the user logs. The application master marks the task attempt as failed, 
and frees up the container so its resources are available for another task. 
Application Master Failure: YARN imposes a limit for the maximum number of 
attempts for any YARN application master running on the cluster, Individual 
applications may not exceed this limit.The limit is set by yarn.resourcemanager.am 
.max-attempts and defaults to 2, If you want to increase the number of MapReduce 
application master attempts, you will have to increase the YARN setting on the 
cluster. An application master sends periodic heartbeats to the resource manager, and 
in the event of application master failure, the resource manager will detect the failure 
and start a new instance of the master running in a new container (managed by a node 
manager). 
Node Manager Failure: If a node manager fails by crashing or running very slowly, 
it will stop sending heartbeats to the resource manager (or send them very 
infrequently). The resource manager will notice a node manager that has stopped 
sending heartbeats if it hasn’t received one for 10 minutes (this is configured, in 
milliseconds, via the  yarn.resourcemanager.nm.liveness-monitor.expiry-interval-ms 
property) and remove it from its pool of nodes to schedule containers on. 
Resource Manager Failure: Failure of the resource manager is serious, because 
without it, neither jobs nor task containers can be launched. In the default 
configuration, the resource manager is a single point of failure, since in the (unlikely) 
event of machine failure, all running jobs fail—and can’t be recovered. 
To achieve high availability (HA), it is necessary to run a air of resource managers in 
an active-standby configuration. If the active resource manager fails, then the standby 
can take over without a significant interruption to the client.  
 

9 a. Explain the features of Map Reduce. 
features: 

 Counters 
 Speculative Execution 
 Distributed Cache 

Counters: 

• Instrument Job’s metrics – Gather statistics – Quality control – confirm what was expected 

– Diagnostics  

• Framework provides a set of built-in metrics – For example bytes processed for input and 

output  



• User can create new counters – Number of records consumed – Number of errors or 

warnings 

 • Counters are divided into groups  

• Tracks total, mapper and reducer counts. 

Built-in Counters: 

Maintains and sums up counts  

Several groups for built-in counters – Job Counters – documents number of map and reduce 

tasks launched, number of failed tasks – File System Counters – number of bytes read and 

written – Map-Reduce Framework – mapper, reducer, combiner input and output records 

counts, time and memory statistics 

Distributed Cache: 

 A mechanism to distribute files  
 Make them available to MapReduce task code  
 yarn command provides several options to add distributed files  
 Can also use Java API directly 
 Supports – Simple text files – Jars – Archives: zip, tar, tgz/tar.gz 

 
b. How different failures are handled by HDFS eco system. 

The Apache Hadoop software library is a framework that allows for the 
distributed processing of large data sets across clusters of computers using 
simple programming models. It is designed to scale up from single servers to 
thousands of machines, each offering local computation and storage. Rather 
than rely on hardware to deliver high-availability, the library itself is designed to 
detect and handle failures at the application layer, so delivering a highly-
available service on top of a cluster of computers, each of which may be prone 
to failures. 

The project includes these modules: 

 Hadoop Common: The common utilities that support the other Hadoop 
modules. 

 Hadoop Distributed File System (HDFS™): A distributed file system that 
provides high-throughput access to application data. 

 Hadoop YARN: A framework for job scheduling and cluster resource 
management. 

 Hadoop MapReduce: A YARN-based system for parallel processing of large 
data sets. 

 
   


