1417502
Hall Ticket Number:

[11/1V B.Tech (Regular) DEGREE EXAMINATION

November, 2016 I nformation Technology
Fifth Semester COMPILER DESIGN
Time: Three Hours Maximum : 60 Marks
Answer Question No.1 compulsorily. (1X12 =12 Marks)
Answer ONE question from each unit. (4X12=48 Marks)
1. Answer all questions (1X12=12 Marks)

a Differentiate phase and pass of a compiler.

b What are the issues to be considered in top down parsing?

o What istherole of lexical analyzer?

d Differentiate canonical LR and LALR parsing.

e What is handle pruning?

f Differentiate synthesized translation and inherited translation.

List out different storage allocation strategies.

= (o]

Write the contents of a symbol table.

What are the issues of a source language?
] Give the three address code for the statement “ W=-X+Y*Z”
k Write the rules to identify basic blocks.
I What is peephole optimization?
UNIT -1
2.a Draw atransition diagram for recognizing tokens identifier, constant, and relational 6M

operator like <, <=, =, >, >=,

2.b WhatisLEX?Explainin detail LEX source program. 6M
(OR)
3.a What isleft recursion? Eliminate |eft recursion of the following grammar
S>(L)/aL->LS/S. 6M

3.b Write the rules to compute first and follow set of a given grammar. Calculate first
and follow set of the given grammar S> A, A > aB/Ad, B> bBC/f,C—> g. 6M

UNIT -1
4.a Show the following grammar S> AaAb/BbBa, A > ¢, B > gisnot SLR (1). 8M
4.b Explain stack implementation of shift reduce parser. aM
(OR)
5.a Construct an LALR parsing table for the following grammar
D> L:T,L>L,id/id, T - integer. 8M
5.b Discussin detail construction of syntax trees. aMm

UNIT - 111

6.a Consider the following program:

6.b

7.a

7.b

8.a
8.b

9.a
9.b

Voidfoo ()

floata, b,c; /* level Odeclaration */

floata, b; /*level ‘1x’ declaration */

}

{
intd,e; /*level ‘ly’ declaration */
{

intf; /*level ‘2" declaration */

}

}

}

Show the stack position after execution of level O, level 1x, level 1y and level 2.
Discussin detail Heap allocation strategy.

(OR)

1417502

8M

aM

Describe the representation of scope information in the symbol table. Consider the

following program structure and give its symbol table organization:
Program main

Var X,y : integer;

Procedure P
Var X, a: boolean;
Procedure Q
Varx,y,z: red;

What is the significance of symbol table at runtime and compile time. Discuss it.

UNIT -1V
Writean SDT scheme for Boolean expressions.
Write quadruples, triples for the expression (a+b) * (c+d)—(a+ b +c)
(OR)
Construct DAG for thefollowing code: a=a+b,e=a+d+e

Write an algorithm for simple code generation.

6M

6M

6M
6M

6M
6M

1417502
I11/1V B.Tech (Regular) DEGREE EXAMINATION

November, 2016 I nfor mation Technology

Fifth Semester Compiler Design

Time: Three Hours Maximum: 60 Marks
Scheme of Evaluation & Answers

1. Answer all questions (1x 12 =12 Marks)

a) Differentiate phase and pass of a compiler?

Ans. phase is used to classify compilers according to the construction, while pass is used to classify
compilers according to how they operate.

b) What aretheissuesto be considered in top down parsing?

Ans. Left recursion and left factoring

c) What istherole of lexical analyzer?

Ans. The LA isthefirst phase of acompiler. Its main task isto read the input character and produce as
output a sequence of tokens that the parser uses for syntax analysis.

d) Differentiate canonical LR and LALR parsing?

Ans: In CLR, we haveto find LR (1) items and we identify final items and check for conflicts.

In LALR, we have to merge equal states with look ahead different and find conflicts.

If agrammar isnot CLR grammar it definitely not LALR. CLR parser is more powerful than LALR.
€) What ishandle pruning?

Ans. Right-most derivation in reverse order is called handle pruning or canonical reduction sequence.
f) Differentiate synthesized trandation and inherited trandation?

Ans. Thevalue of a synthesized attribute at a node is computed from the values of the attributes at the
children of that node in the parse tree.

The value of ainherited attribute at a node is computed from the values of the attributes at the siblings
and parent of that node.

g) List out different storage allocation strategies?
Ans. Static storage allocation

Stack storage allocation

Heap storage allocation
h) write the contents of a symbol table?

Ans. « Name: a string.
* Attribute: Reserved word, Variable name, Type name, Procedure name, Constant name.
* Data type.
* Storage alocation, size.
* Scope information: where and when it can be used.
i) What aretheissues of a sour ce language?

Ans. Procedures
Activation trees
Control stacks
The scope of a declaration and binding of names

1417502
) Givethethree address code for the statement W= -X+Y*Z

Ans. T1=-X
T2=Y*Z
T3=T1+T2
W=T3
[) Writetherulesto identify basic blocks?
Ans. i) Thefirst statement isaleader
i) Any statement that is the target of a conditional or unconditional goto is aleader.
iii) Any statement that immediately follows a goto or conditional goto statement is aleader.
I) Define peephole optimization?

Ans. A method for trying to improve the performance of the target program by examining a short
sequence of target instructions and replacing these instructions by a shorter or faster sequence,
whenever possible.

Note: Givel Mark for attempt

UNIT-I
2 a) Draw a transition diagram for recognizing tokens identifier, constant, and relational
operatorslike<, <=, =, >, >=? 6M
Ans:

1. Certain states are said to be accepting or final .These states indicates that a lexeme has been found,
although the actual lexeme may not consist of all positions b/w the lexeme Begin and forward pointers
we always indicate an accepting state by a double circle.

2. In addition, if it is necessary to return the forward pointer one position, then we shall additionally
place a* near that accepting state.

3. One state is designed the state ,or initial state ., it is indicated by an edge labeled “start” entering
from nowhere .the transition diagram aways begins in the state before any input symbols have been
used. As an intermediate step in the construction of aLA, we first produce a stylized flowchart, called
atransition diagram. Position in atransition diagram, are drawn as circles and are called as states.

Identifier Transition diagram:
letter or digit
*

start letter other ’
_., e return (gettoken(), installiD()}

Relational operators Transition diagram:
< = I dentifier diagram- 2 Marks

Constant diagram- 1 Mark

Relational operatorsdiagram- 3 Marks

Y Retamneiop GE

1417502

* return(gettoken(), install_id())

2b) What isLEX? Explain in detail LEX sour ce program? 6M

Ans. We describe a particular tool, called Lex, that has been widely used ti specify lexical analyzers
for avariety of languages. We refer to the tool as the Lex compiler, and to its specification as the Lex
language.First, a specification of alexical analyzer is prepared by creating a program lex.l in the Lex
language. Then, lex.| is run through the Lex compiler to produce a C program lex.yy.c. The program
lex.yy.c consists of a tabular representation of a transition diagram constructed from the regular
expressions of lex.l, together with a standard routine that uses the table to recognize lexemes. Finally,
lex.yy.c is run through the C compiler to produce an object program a.out, which is the lexical
analyzer that transforms an input stream into a sequence of tokens.

: Lex ’
Lex source . ——— W lex. e
4 —l ORI
Program lev.| compiler LEX —1 Mark
Explanation- 2 Marks
s > aon LEX program — 3 Marks
lex.yy< Compiler
it — a.out I Sequence of
Slreann Tokens

L ex specifications:
A Lex program (the .l file) consists of three parts:
declarations
%%
tranglation rules
%%
auxiliary procedures
1. The declarations section includes declarations of variables, manifest constants(A manifest constant
isan identifier that is declared to represent a constant e.g. # define PIE 3.14), and regular definitions.

2. Thetrandation rules of aLex program are statements of the form:
pl {action 1}
p2 {action 2}
p3 {action 3}

Pn {action n}
Where, each p is aregular expression and each action is a program fragment describing what action
the lexical analyzer should take when a pattern p matches a lexeme. In Lex the actions are written in
C.
3. The third section holds whatever auxiliary procedures are needed by the actions. Alternatively these
procedures can be compiled separately and loaded with the lexical analyzer.

L EX source program:

%

/* definitions of manifest constants
LT, LE, EQ, NE, GT, GE
IF, THEN, ELSE, ID, NUMBER, RELOP */

%6}

[* regular definitions */

delim

ws

letter

digit

Id

%%

{ws}

if

then

{id}

%%
install_id() {
}
install_num() {

[\t \n]

[delim]+

[A-Z a-Z]

[0-9]

{letter} ({letter}{digit})*

{/* no action and no return */}

{ return (IF) }

{ return (THEN) }

{yylva =ingtall_id(); return (1D);}

(OR)

1417502

3 a) What isleft recursion? Eliminate left recursion of the following grammar
S=>(L)/aL>L,S/S

Ans. A grammar is said to be left recursive if it has a non-terminal A such that there is a derivation
A=>Aa for some string a. Top-down parsing methods cannot handle left-recursive grammars.
Hence, |eft recursion can be eliminated as follows:

6M

If thereisaproduction A — Aa | B it can bereplaced with a sequence of two productions

A o BA

A - oA’ e

Without changing the set of strings derivable from A.
Elimination of left recursion for the given grammar is:

S>(L)/a
L>L,S/S
S production has no left recursion
L production has left recursion, so eliminateit from L production.

L->SL’
L’> SL’ /€

So, After elimination of left recursion the resultant grammar is

S>(L)/a
L >sL’
L’ > SL' /€

Left recursion —2 Marks
Elimination of Left recursion-

4 Marks

1417502

3 b) Writetherulesto computefirst and follow set of given grammar. Calculatefirst and follow
set of thegiven grammar S> A, A>aB/Ad, B>bBC/f, C>g. 6M

Ans. The construction of a predictive parser is aided by two functions associated with agrammar G :

1. FIRST Rulesof FIRST & FOLLOW -2 Marks

2. FOLLOW
Rulesfor first(): FIRST set —2Marks

1. If X isterminal, then FIRST(X) is{ X}. FOLLOW set —2Marks

2. 1f X - € isaproduction, then add € to FIRST(X).
3. If X isnon-terminal and X - aa isaproduction then add ato FIRST(X).

4. If X isnon-terminal and X - Y1 Y2...YKk is a production, then place a in FIRST(X) if for somei, a
isin FIRST(Yi), and € is in all of FIRST(Y1),...,FIRST(Yi-1); that is, Y1,....Yi-1=> €. If € isin
FIRST(Y)) for dl j=1,2,..,k, then add € to FIRST(X).

Rulesfor follow():

1. If Sisastart symbol, then FOLLOW(S) contains $.

2. If thereisaproduction A - aBp, then everything in FIRST(3) except € is placed in follow(B).

3. If there is a production A — aB, or a production A - aBp where FIRST(B) contains €, then
everything in FOLLOW(A) isin FOLLOW(B).

FIRST set of the given grammar
FIRST (S)={ a}
FIRST (A)={a}
FIRST (B)={ bf}
FIRST (C)={g}

FOLLOW set of the given grammar
FOLLOW (S)={ $}
FOLLOW (A)={d, $}
FOLLOW (B)={g,d, $}
FOLLOW (C)={g,d, $}

UNIT-II
4 a) Show thefollowing grammar S>AaAb / BbBa, A>€, B>€ is not SLR(1). 8M
Ans: TT)% gglsnA%rzrgmar 'S Augmented grammar — 1 Mark
2) S BbBa Find LR(0) items— 3 Marks
3) A€
4) B>€ SLR Table construction — 4 Marks
Step 1:Convert given grammar into augmented grammar
S’>S
S>AaAb
S—> BbBa
A>€
B>€
Step 2: Find LR (0) items
0 §>.5 GOTO (10, S) GOTO (10, B) GOTO(12, 8
S>.AaAb 11:5'> S, 13: S> B.bBa 15: S AaADb
S-> .BbBa A>E
B3¢ GOTO (10, A) GOTO ('g’) GOTO (13, 3)
12: 5> A.aADb A . 16: S> Bb.Ba
B>. B> £

GOTO(I5, A) GOTO (I5, €) GOTO (16, B) GOTO (16, €)

17: S> AaA.b 18: A~ €. 19: S BbB.a 110: B-> £.
Follow (S) ={ $}

GOTO (17, b) GOTO (19, a) Follow (A) = { ab)

111: S=> AaAb. 112: S=> BbBa Follow(B) ={ ab}

Step 3: Construction of an SLR parse table

1417502

ACTION GOTO
State a b € $ S A B
0 A 1 2 3
1 Accept
2 S5
T £’
4 \) r3/r4
5 r3/r4 &_/ = 5
6 S10 9
7 S11
8 r3 r3
9 S12
10 r4 r4
11 ri
12 ri

The table has multiply defined entries, so the given grammar is not an SLR(1).

4 b) Explain stack implementations of shift reduce parser?

Ans:

aMm

Actionsin shift reduce parser — 2 Marks

Stack example-2 Marks

Shift-reduce parsing is a type of bottom-up parsing that attempts to construct a parse tree for an input

string beginning at the leaves (the bottom) and working up towards the root (the top).

Actions in shift-reduce parser:

o shift

The next input svmbol 1s shifted onto the top of the stack

+ reduce — The parser replaces the handle within a stack with a non-terminal.

¢ accept
L CIror

routine.

The parser announces successful completion of parsing.

— The parser discovers that a syntax error has occurred and calls an error recovery

Stack implementation of shift-reduce parsing :

1417502

Stack Input ‘ Action
5 id, +id,*id: $ shift
'Sid, +id:*id: $ reduce by E-—id
| $E “id-*id: $ shift
S EA id-*id: § shift
| $ E+ids *fid- § reduce by E—id
$F+E *id: § 'lsh.'ﬁ.
$ E+E* id3 § " shift
| $ E+E*id3 $ reduce by E—id
$ E+E*E $ “reduce by E— E *E
$E+E $ | reduce by E— E+E
' $F $ I| accept
(OR)

5a) Construct an LALR parsing tablefor the following grammar

D->L:T,L->L ,id/id, T integer

Ans. The given grammar is

D->L:T
L->L,id

L->id

T2

i=> integer

8M

Augmented grammar — 1 Mark
Find LR(1) items— 3 Marks

LALR Tableconstruction —4 Marks

Step-1: Convert given grammar into augmented grammar

D’->D
D->L:T
L->L,id
L->id
T2

Step 2: Find LR (1) items

10:D’>.D, %
D>.LT,$
L=>.L,id,:
L->.id,:

GOTO (10, D) GOTO (10, L) GOTO (10, L)

11:D’>D.,$ 13: L~>id., : I5: L=>L,.id, :

coTO (10, L) GOTO (12,) GOTO (14, T)

12D>L.T, $ 14:D>L:T, $ 16: D>LT., $
L->L.,id,: ™Si. %

1417502

GOTO (14, 1) GOTO (15, id)
17:T2i.,$ 12: L>L,id. ,:
Step-3: Construction of an LALR parsing table
State ACT_I ON _ GOTO
, [id $ D L T
0 S3 1 2
1 Accept
2 A S5
3 r3
4 S7 6
5 S8
6 rl
7 r4
8 r2
5b) Discussin detail construction of syntax trees. aM

Ans. The construction of a syntax treeis similar to the tranglation of the expression into postfix form.
We construct sub trees for the sub expressions by creating a node for each operator and operand. The
children of an operator node are the roots representing the sub expressions constituting the operands
of that operator.

Each node in a syntax tree can be implemented as arecord with several fields. In the node for
an operator, one field identifies the operator and the remaining fields contain pointers to the nodes for
the operands. The operator is often called the |abel of the node.

We use the following functions to create the node of syntax trees for expressions with binary
operators. Each function returns a pointer to newly created node.

mknode (op,left,right)- Creates an operator node with label op and two fields containing
pointersto left and right.

mkleaf (id, entry)- Creates an identifier node with label id and afield containing entry, a
pointer to the symbol table entry for the identifier.

mkleaf (num, val)- creates a number node with label num and afield containing val, the
value of the number.

UNIT-III
6 a) Consider the following program 8M
void foo ()
{ Stack position at level0 - 2 Marks
float a, b, c; /* level O declaration */ o
_____________ Stack position at levellx — 2 Marks
{ """"""" Stack position at levelly — 2 Marks
float a, b; I* level *1x” declaration */ | gtack position at level2 — 2 Marks
}
{
intd, e /* level ‘1y’ declaration */

10

1417502

intf; /* level ‘27 declaration */

}
}
Show the stack position after execution of level O, level 1x, level 1y and level 2.
Ans:

Stack position at level O: Stack position al level 1x:
i a var float
a | var | int b var float
b var int
c var int
Stack a var int
b var int
c var int
Sack
Stack position at level 1y: Stack position at level 2:
| | va int
d var int
e var int d var int
e var int
a var int
b var int a var int
c var int b var int
c var int
Stack
Stack
6 b) Discussin detail heap allocation strategy? aM
Ans.

Heap explanation — 2 Marks
Heap diagram- 2 Marks

Stack allocation strategy cannot be used if either of the following is possible :

1. The values of local names must he retained when an activation ends.
2 A called achivation outhves the caller

e Heap allocation parcels out pieces of contiguous storage, as needed for activation records
or other objects.

¢ Pieces may be deallocated in any order, so over the time the heap will consist of alternate
areas that are frep and in nse

11

1417502

Position in the Activation records 1n the heap Remarks.
activation free

4 . Retained activation
: & record for ¢
r*oq(1,9%] contval link
T

® The record for an activation of procedure r is retained when the activation ends.
e Therefore, the record for the new activation g(1 , 9) cannot follow that for s physically.

¢ If the retained activation record for r is deallocated, there will be free space in the heap
between the activation records for s and q.

(OR)
7 a) Describethe representation of scope information in the symbol table. 6M
Consider the following program structure and give its symbol table organization:

Program main L Representation of scope information explanation - 3 Marks
var X,y : integer

Procedure P Symbol table organization diagram — 3 Marks
var X, a: Boolean

Procedure Q

varx,y,z:red
Ans. Most languages have facilities for defining names with limited scopes.
Examples:
» FORTRAN: where the scope of anameis asingle subroutine.
» ALGOL: where the scope of aname isthe block or procedure in which it is declared.

This situation allows the possibility that in the same program the same identifier may be declared
several times as distinct names, possibly with different attributes and usually with different intended
storage locations. It is thus the responsibility of the symbol table to keep different declarations of the
same identifier distinct.

The usua method of making the distinction is to give a unigue number to each program element that
may haveits own local data.

The number of the currently active subprogram is computed by semantic rules associated with
productions that recognize the beginning and end of a subprogram. The subprogram number is a part
of all names declared in that subprogram. The representation of the name inside the symbol tableisa
pair consisting of the corresponding identifier and the subprogram number.

12

1417502
Global symbol table

main proc -
P proc --
Q proc --
X var | int X | var | boolean X | var | rea
y var | int a | var | boolean y | var | rea
z | var | red
7 b) What isthe significance of symbol table at run time and compile time. Discussit? 6M

Ans:

A compiler needs to collect and use information about the names appearing in the source program.

Thisinformation is entered into a data structure called a symbol table.
A symbol table is a compile-time data structure.
Determine whether a given nameisin the symbol table
Access the information associated with a given name Run time— 3 Marks

Significance of S.T at Compile
time- 3 Marks

Information must appear in the symbol table to denote the locations in storage belonging to
data objects at run time
It’s not used during run time by statically typed languages.

Any relevant information can be considered.

UNIT-IV
8a) Writean SDT schemefor Boolean expressions? 6M
Ans. An SDT scheme for Boolean expressionsis as follows SDT Scheme- 6 Marks
PRODUCTION SEMANTIC RULES
E= EjorkE; Ey.true : = E.true;

Eypfalse : = newlabel;

Estrue - = E.true;

Eafalse : = E. false;

E.code : = Ej.code || gen(Efalse *:’) || Ex.code

E—= E;and £, E.true : = newlabel;

Efalse : = E.false;

Extrue : = E true;

Esfalse : = E.false;

E.code : = Epcode || gen(Etrue ') || Es.code

E =2 not £ Eptrue : = E false;
Epfalse : = E.true;
E.code : E;.c'udu

E=2(EI) Eptrue : = E.true;

Is

1417502

Efalse : = E false;
E.code : = E;.code
E =2 id; relop id; E.code : = gen(‘if’ idy.place relop.op idqy.place
‘soto’ E.true) || gen(‘goto’ L false)
E =2 true E.code : = gen(*goto™ E.true)
E = false E.code : = gen('goto’ E false)
8 b) Writequadruples, triplesfor theexpression (a+b)* (c+d)-(a+ b +¢) 6M
Ans:
Three address code for the expression Quadruplestructure— 3 Marks
tL=a+b Tripl Mark
2=c+d riplestructure— 3 Marks
t3=t1*t2
t4d=a+b
t5=c
t6=t4+1t5
t7=t3-16

Quadruple: Quadrupleisrecord structure with four fields, which are OP, Argl, Arg2 and Result.

OP Argl Arg2 Result
+ a b tl
+ C d t2
* tl t2 t3
+ a b t4
assign C - t5
+ t4 t5 t6
- t3 t6 t7

Triples: Three address statements can be represented by records with three fields: OP, Argl, Arg2.

Argl Arg2

Q) a b
2 C d
(©) (1) 2
4 a b
(5) assign c -

(6) (4) (5
() 3 (6)

(OR)

9 a) Construct DAG for thefollowingcodea=a+b,e=a+d+e

6M

Ans:

DAG for a=a+ b -3 Marks

DAGfore=a+d+e

14

1417502

DAG for the expression a= a+ bisasfollows:

C:) + \b

DAG for the expressone=a+d + eisasfollows:
e / +\
+
RN
a d

9b) Writean algorithm for simple code generation? 6M
Code generation algorithm- 6 Marks

A code-generation algorithm:

The algorithm takes as input a sequence of three-address statements constituting a basic block.
For each three-address statement of the form x : = y op z, perform the following actions:

1. Invoke a function getreg to determine the location L where the result of the computation y op
z should be stored.

b2

Consult the address descriptor for ¥ to determine v’, the current location of y. Prefer the
register for y* if the value of y is currently both in memory and a register. If the value of v is
not already in L. generate the instruction MOV v* , L to place a copyof vy in L.

3. Generate the instruction OP z’ , L where z” is a current location of z. Prefer a register to a
memory location if z 1s in both. Update the address descriptor of x to indicate that x is in
location L. If x is in L, update its descriptor and remove x from all other deseriptors.

4. Tf the current values of v or z have no next uses, are not live on exit from the block, and are in

registers, alter the register descriptor to indicate that, after execution of x : =y op z . those
registers will no longer contain y or z.

Scheme prepared by Signature of the HOD, IT DEPT.

Paper Evaluators:

S.No Name of the College Name of the Examiner Signature

15

