
14IT502

1

Hall Ticket Number:

III/IV B.Tech (Regular) DEGREE EXAMINATION

November, 2016 Information Technology
Fifth Semester COMPILER DESIGN
Time: Three Hours Maximum : 60 Marks

Answer Question No.1 compulsorily. (1X12 = 12 Marks)

Answer ONE question from each unit. (4X12=48 Marks)

1. Answer all questions (1X12=12 Marks)

a Differentiate phase and pass of a compiler.

b What are the issues to be considered in top down parsing?

c What is the role of lexical analyzer?

d Differentiate canonical LR and LALR parsing.

e What is handle pruning?

f Differentiate synthesized translation and inherited translation.

g List out different storage allocation strategies.

h Write the contents of a symbol table.

i What are the issues of a source language?

j Give the three address code for the statement “ W=-X+Y*Z”

k Write the rules to identify basic blocks.

l What is peephole optimization?

UNIT – I

2.a Draw a transition diagram for recognizing tokens identifier, constant, and relational

operator like <, <=, =, >, >=.

6M

2.b What is LEX? Explain in detail LEX source program. 6M

(OR)

3.a What is left recursion? Eliminate left recursion of the following grammar

S (L) / a, L L,S / S. 6M

3.b Write the rules to compute first and follow set of a given grammar. Calculate first

and follow set of the given grammar S A, A aB / Ad, B bBC / f, C g. 6M

UNIT – II

4.a Show the following grammar S AaAb / BbBa, A ɛ, B ɛ is not SLR (1). 8M

4.b Explain stack implementation of shift reduce parser. 4M

(OR)

5.a Construct an LALR parsing table for the following grammar

D L : T , L L, id / id, T integer. 8M

5.b Discuss in detail construction of syntax trees. 4M

14IT502

2

UNIT – III

6.a Consider the following program:
Void foo ()

{
float a, b, c; /* level 0 declaration */
…………….
……………..
{

float a, b; /* level ‘1x’ declaration */
……………..
……………..

}
{

int d, e; /* level ‘1y’ declaration */
{

int f; /* level ‘2’ declaration */
……………
……………

}
}

}
Show the stack position after execution of level 0, level 1x, level 1y and level 2.

8M

6.b Discuss in detail Heap allocation strategy. 4M

(OR)

7.a Describe the representation of scope information in the symbol table. Consider the

following program structure and give its symbol table organization:

Program main

Var x, y : integer;

Procedure P

Var X, a : boolean;

Procedure Q

Var x, y, z : real;

6M

7.b What is the significance of symbol table at runtime and compile time. Discuss it. 6M

UNIT – IV

8.a Write an SDT scheme for Boolean expressions. 6M

8.b Write quadruples, triples for the expression (a + b) * (c + d) – (a + b + c) 6M

(OR)

9.a Construct DAG for the following code: a = a + b, e = a + d + e 6M

9.b Write an algorithm for simple code generation. 6M

14IT502

3

III/IV B.Tech (Regular) DEGREE EXAMINATION

November, 2016 Information Technology
Fifth Semester Compiler Design
Time: Three Hours Maximum: 60 Marks

Scheme of Evaluation & Answers
1. Answer all questions (1 x 12 = 12 Marks)
a) Differentiate phase and pass of a compiler?
Ans: phase is used to classify compilers according to the construction, while pass is used to classify
compilers according to how they operate.
b) What are the issues to be considered in top down parsing?
Ans: Left recursion and left factoring
c) What is the role of lexical analyzer?
Ans: The LA is the first phase of a compiler. Its main task is to read the input character and produce as
output a sequence of tokens that the parser uses for syntax analysis.

d) Differentiate canonical LR and LALR parsing?

Ans: In CLR, we have to find LR (1) items and we identify final items and check for conflicts.

In LALR, we have to merge equal states with look ahead different and find conflicts.

If a grammar is not CLR grammar it definitely not LALR. CLR parser is more powerful than LALR.

e) What is handle pruning?

Ans: Right-most derivation in reverse order is called handle pruning or canonical reduction sequence.

f) Differentiate synthesized translation and inherited translation?

Ans: The value of a synthesized attribute at a node is computed from the values of the attributes at the
children of that node in the parse tree.

The value of a inherited attribute at a node is computed from the values of the attributes at the siblings
and parent of that node.

g) List out different storage allocation strategies?

Ans: Static storage allocation

Stack storage allocation

Heap storage allocation

h) write the contents of a symbol table?

Ans: • Name: a string.
• Attribute: Reserved word, Variable name, Type name, Procedure name, Constant name.
• Data type.
• Storage allocation, size.
• Scope information: where and when it can be used.

i) What are the issues of a source language?

Ans: Procedures

Activation trees

Control stacks

The scope of a declaration and binding of names

14IT502

4

j) Give the three address code for the statement W= -X+Y*Z

Ans: T1 = -X

T2 = Y*Z

T3 = T1+T2

W = T3

l) Write the rules to identify basic blocks?

Ans: i) The first statement is a leader

ii) Any statement that is the target of a conditional or unconditional goto is a leader.

iii) Any statement that immediately follows a goto or conditional goto statement is a leader.

l) Define peephole optimization?

Ans: A method for trying to improve the performance of the target program by examining a short
sequence of target instructions and replacing these instructions by a shorter or faster sequence,
whenever possible.

Note: Give 1 Mark for attempt

UNIT-I

2 a) Draw a transition diagram for recognizing tokens identifier, constant, and relational
operators like <, <=, =, >, >=? 6M
Ans:
1. Certain states are said to be accepting or final .These states indicates that a lexeme has been found,
although the actual lexeme may not consist of all positions b/w the lexeme Begin and forward pointers
we always indicate an accepting state by a double circle.
2. In addition, if it is necessary to return the forward pointer one position, then we shall additionally
place a * near that accepting state.
3. One state is designed the state ,or initial state ., it is indicated by an edge labeled “start” entering
from nowhere .the transition diagram always begins in the state before any input symbols have been
used. As an intermediate step in the construction of a LA, we first produce a stylized flowchart, called
a transition diagram. Position in a transition diagram, are drawn as circles and are called as states.
Identifier Transition diagram:

Relational operators Transition diagram:
Identifier diagram- 2 Marks

Constant diagram- 1 Mark

Relational operators diagram- 3 Marks

14IT502

5

Constant transition diagram: digit

Digit not digit * return(gettoken(), install_id())

2 b) What is LEX? Explain in detail LEX source program? 6M

Ans: We describe a particular tool, called Lex, that has been widely used ti specify lexical analyzers
for a variety of languages. We refer to the tool as the Lex compiler, and to its specification as the Lex
language.First, a specification of a lexical analyzer is prepared by creating a program lex.l in the Lex
language. Then, lex.l is run through the Lex compiler to produce a C program lex.yy.c. The program
lex.yy.c consists of a tabular representation of a transition diagram constructed from the regular
expressions of lex.l, together with a standard routine that uses the table to recognize lexemes. Finally,
lex.yy.c is run through the C compiler to produce an object program a.out, which is the lexical
analyzer that transforms an input stream into a sequence of tokens.

Lex specifications:
A Lex program (the .l file) consists of three parts:

declarations
%%

translation rules
%%

auxiliary procedures
1. The declarations section includes declarations of variables, manifest constants(A manifest constant
is an identifier that is declared to represent a constant e.g. # define PIE 3.14), and regular definitions.

2. The translation rules of a Lex program are statements of the form:
p1 {action 1}
p2 {action 2}
p3 {action 3}
… …
… …
Pn {action n}

Where, each p is a regular expression and each action is a program fragment describing what action
the lexical analyzer should take when a pattern p matches a lexeme. In Lex the actions are written in
C.
3. The third section holds whatever auxiliary procedures are needed by the actions. Alternatively these
procedures can be compiled separately and loaded with the lexical analyzer.

1 2 3

LEX – 1 Mark

Explanation- 2 Marks

LEX program – 3 Marks

14IT502

6

LEX source program:
%{

/* definitions of manifest constants
LT, LE, EQ, NE, GT, GE
IF, THEN, ELSE, ID, NUMBER, RELOP */

%}
/* regular definitions */
delim [\t \n]
ws [delim]+
letter [A-Z a-z]
digit [0-9]
Id {letter} ({letter}|{digit})*
%%
{ws} {/* no action and no return */}
if { return (IF) }
then { return (THEN) }
{ id } {yylval = install_id(); return (ID); }
………
%%
install_id() {
………………
}
install_num() {
………………..
}

(OR)

3 a) What is left recursion? Eliminate left recursion of the following grammar

S (L) / a, L L , S / S. 6M

Ans: A grammar is said to be left recursive if it has a non-terminal A such that there is a derivation
A=>Aα for some string α. Top-down parsing methods cannot handle left-recursive grammars.
Hence, left recursion can be eliminated as follows:

If there is a production A → Aα | β it can be replaced with a sequence of two productions
A → βA’ A’ → αA’ | ε

Without changing the set of strings derivable from A.
Elimination of left recursion for the given grammar is:

S (L) / a,
L L , S / S

S production has no left recursion
L production has left recursion, so eliminate it from L production.

L SL’
L’ ,SL’ / €

So, After elimination of left recursion the resultant grammar is
S (L) / a
L SL’
L’ ,SL’ / €

Left recursion – 2 Marks

Elimination of Left recursion-

4 Marks

14IT502

7

3 b) Write the rules to compute first and follow set of given grammar. Calculate first and follow
set of the given grammar S A, AaB / Ad, BbBC / f, Cg. 6M

Ans: The construction of a predictive parser is aided by two functions associated with a grammar G :
1. FIRST
2. FOLLOW

Rules for first():
1. If X is terminal, then FIRST(X) is {X}.
2. If X → ε is a production, then add ε to FIRST(X).
3. If X is non-terminal and X → aα is a production then add a to FIRST(X).
4. If X is non-terminal and X → Y1 Y2…Yk is a production, then place a in FIRST(X) if for some i, a
is in FIRST(Yi), and ε is in all of FIRST(Y1),…,FIRST(Yi-1); that is, Y1,….Yi-1=> ε. If ε is in
FIRST(Yj) for all j=1,2,..,k, then add ε to FIRST(X).

Rules for follow():
1. If S is a start symbol, then FOLLOW(S) contains $.
2. If there is a production A → αBβ, then everything in FIRST(β) except ε is placed in follow(B).
3. If there is a production A → αB, or a production A → αBβ where FIRST(β) contains ε, then
everything in FOLLOW(A) is in FOLLOW(B).

FIRST set of the given grammar
FIRST (S) = { a }
FIRST (A) = { a }
FIRST (B) = { b,f }
FIRST (C) = { g }

FOLLOW set of the given grammar
FOLLOW (S) = { $ }
FOLLOW (A) = { d, $ }
FOLLOW (B) = { g, d, $ }
FOLLOW (C) = { g, d, $ }

UNIT-II

4 a) Show the following grammar SAaAb / BbBa, A€, B€ is not SLR(1). 8M

Ans: The given grammar is
1) SAaAb
2) S BbBa
3) A€
4) B€

Step 1:Convert given grammar into augmented grammar
S’S
SAaAb
S BbBa
A€
B€

Step 2: Find LR (0) items

I0: S’.S
S.AaAb
S .BbBa
A.€
B.€

GOTO (I0, S)
I1: S’ S.

GOTO (I0, A)
I2: S A.aAb

GOTO (I0, B)
I3: S B.bBa

GOTO (I0, €)
I4: A .€

B .€

GOTO (I2, a)
I5: S Aa.Ab

A.€

GOTO (I3, a)
I6: S Bb.Ba

B .€

Rules of FIRST & FOLLOW – 2 Marks
FIRST set – 2 Marks
FOLLOW set – 2 Marks

Augmented grammar – 1 Mark

Find LR(0) items – 3 Marks

SLR Table construction – 4 Marks

14IT502

8

Step 3: Construction of an SLR parse table

State
ACTION GOTO

a b € $ S A B
0 S4 1 2 3
1 Accept
2 S5
3 S6
4
5 S8 7
6 S10 9
7 S11
8 r3 r3
9 S12
10 r4 r4
11 r1
12 r1

The table has multiply defined entries, so the given grammar is not an SLR(1).

4 b) Explain stack implementations of shift reduce parser? 4M

Ans:

Shift-reduce parsing is a type of bottom-up parsing that attempts to construct a parse tree for an input

string beginning at the leaves (the bottom) and working up towards the root (the top).

GOTO (I5, A)
I7: S AaA.b

GOTO (I5, €)
I8: A €.

GOTO (I6, B)
I9: S BbB.a

GOTO (I6, €)
I10: B €.

GOTO (I7, b)
I11: S AaAb.

GOTO (I9, a)
I12: S BbBa.

Follow (S) = { $ }
Follow (A) = { a,b }
Follow(B) = { a,b }

r3/r4 r3/r4

Actions in shift reduce parser – 2 Marks

Stack example – 2 Marks

14IT502

9

(OR)

5 a) Construct an LALR parsing table for the following grammar

DL:T, LL , id / id, T integer 8M

Ans: The given grammar is
DL:T
LL , id

L id
T i i integer

Step-1: Convert given grammar into augmented grammar
D’D
DL:T
LL , id

L id
T i

Step 2: Find LR (1) items

I0: D’.D, $
D.L:T, $
L.L , id, :
L. id, :

GOTO (I0, D)
I1: D’ D. , $

GOTO (I0, L)
I2: DL.:T, $

LL.,id, :

GOTO (I0, L)
I3: Lid. , :

GOTO (I2, :)
I4: DL:.T, $

T.i , $

GOTO (I0, L)
I5: LL,.id, :

GOTO (I4, T)
I6: DL:T., $

Augmented grammar – 1 Mark

Find LR(1) items – 3 Marks

LALR Table construction – 4 Marks

14IT502

10

Step-3: Construction of an LALR parsing table

State
ACTION GOTO

: , i id $ D L T
0 S3 1 2
1 Accept
2 S4 S5
3 r3
4 S7 6
5 S8
6 r1
7 r4
8 r2

5 b) Discuss in detail construction of syntax trees. 4M

Ans: The construction of a syntax tree is similar to the translation of the expression into postfix form.

We construct sub trees for the sub expressions by creating a node for each operator and operand. The

children of an operator node are the roots representing the sub expressions constituting the operands

of that operator.

Each node in a syntax tree can be implemented as a record with several fields. In the node for

an operator, one field identifies the operator and the remaining fields contain pointers to the nodes for

the operands. The operator is often called the label of the node.

We use the following functions to create the node of syntax trees for expressions with binary

operators. Each function returns a pointer to newly created node.

mknode (op,left,right)- Creates an operator node with label op and two fields containing

pointers to left and right.

mkleaf (id, entry)- Creates an identifier node with label id and a field containing entry, a

pointer to the symbol table entry for the identifier.

mkleaf (num, val)- creates a number node with label num and a field containing val, the

value of the number.
UNIT-III

6 a) Consider the following program 8M
void foo ()
{

float a, b, c; /* level 0 declaration */
………….
…………..
{

float a, b; /* level ‘1x’ declaration */
………..
………..

}
{

int d, e; /* level ‘1y’ declaration */

GOTO (I4, i)
I7: Ti. , $

GOTO (I5, id)
I2: LL,id. , :

Stack position at level0 – 2 Marks

Stack position at level1x – 2 Marks

Stack position at level1y – 2 Marks

Stack position at level2 – 2 Marks

14IT502

11

{
int f; /* level ‘2’ declaration */
……….
……….

}
}

}
Show the stack position after execution of level 0, level 1x, level 1y and level 2.
Ans:
Stack position at level 0: Stack position al level 1x:

Stack

Stack
Stack position at level 1y: Stack position at level 2:

Stack
Stack

6 b) Discuss in detail heap allocation strategy? 4M
Ans:

a var int
b var int
c var int

a var float
b var float

a var int
b var int
c var int

d var int
e var int

a var int
b var int
c var int

f var int

d var int
e var int

a var int
b var int
c var int

Heap explanation – 2 Marks
Heap diagram- 2 Marks

14IT502

12

(OR)
7 a) Describe the representation of scope information in the symbol table. 6M

Consider the following program structure and give its symbol table organization:
Program main

var x,y : integer
Procedure P

var x, a : Boolean
Procedure Q

var x, y, z : real
Ans: Most languages have facilities for defining names with limited scopes.
Examples:
 FORTRAN: where the scope of a name is a single subroutine.
 ALGOL: where the scope of a name is the block or procedure in which it is declared.

This situation allows the possibility that in the same program the same identifier may be declared
several times as distinct names, possibly with different attributes and usually with different intended
storage locations. It is thus the responsibility of the symbol table to keep different declarations of the
same identifier distinct.
The usual method of making the distinction is to give a unique number to each program element that
may have its own local data.
The number of the currently active subprogram is computed by semantic rules associated with
productions that recognize the beginning and end of a subprogram. The subprogram number is a part
of all names declared in that subprogram. The representation of the name inside the symbol table is a
pair consisting of the corresponding identifier and the subprogram number.

Representation of scope information explanation - 3 Marks

Symbol table organization diagram – 3 Marks

14IT502

13

Global symbol table

7 b) What is the significance of symbol table at run time and compile time. Discuss it? 6M
Ans:

A compiler needs to collect and use information about the names appearing in the source program.
This information is entered into a data structure called a symbol table.
A symbol table is a compile-time data structure.

Determine whether a given name is in the symbol table
Access the information associated with a given name
Information must appear in the symbol table to denote the locations in storage belonging to
data objects at run time
It’s not used during run time by statically typed languages.

Any relevant information can be considered.
UNIT-IV

8 a) Write an SDT scheme for Boolean expressions? 6M
Ans: An SDT scheme for Boolean expressions is as follows

main proc --
P proc --
Q proc --

x var int
y var int

x var boolean
a var boolean

x var real
y var real
z var real

Significance of S.T at Compile
time – 3 Marks

Run time – 3 Marks

SDT Scheme- 6 Marks

14IT502

14

8 b) Write quadruples, triples for the expression (a + b) * (c + d) – (a + b + c) 6M
Ans:
Three address code for the expression

t1 = a + b
t2 = c + d
t3 = t1 * t2
t4 = a + b
t5 = c
t6 = t4 + t5
t7 = t3 – t6

Quadruple: Quadruple is record structure with four fields, which are OP, Arg1, Arg2 and Result.

OP Arg1 Arg2 Result
+ a b t1
+ c d t2
* t1 t2 t3
+ a b t4

assign c - t5
+ t4 t5 t6
- t3 t6 t7

Triples: Three address statements can be represented by records with three fields: OP, Arg1, Arg2.

OP Arg1 Arg2
(1) + a b
(2) + c d
(3) * (1) (2)
(4) + a b
(5) assign c -
(6) + (4) (5)
(7) - (3) (6)

(OR)

9 a) Construct DAG for the following code a= a + b, e = a + d + e 6M

Ans:

Quadruple structure – 3 Marks

Triple structure – 3 Marks

DAG for a= a + b – 3 Marks

DAG for e = a + d + e

14IT502

15

DAG for the expression a= a + b is as follows:

: =

+

a b

DAG for the expression e= a + d + e is as follows:

: =

e +

+

a d

9 b) Write an algorithm for simple code generation? 6M

Scheme prepared by Signature of the HOD, IT DEPT.

Paper Evaluators:
S.No Name of the College Name of the Examiner Signature

Code generation algorithm- 6 Marks

