
Page 1 of 21

 14CS IT 306
Hall Ticket Number:

II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION

November, 2017 Common for CSE & IT

Third Semester Object Oriented Programming
Time: Three Hours Maximum : 60 Marks

Answer Question No.1 compulsorily. (1X12 = 12 Marks)

Answer ONE question from each unit. (4X12=48 Marks)

1. Answer all questions (1X12=12 Marks)
 a) What is Encapsulation?
 b) What is Polymorphism?
 c) Differentiate value types and reference types.
 d) List various operators that cannot be overloaded.
 e) Write the uses of base keyword.
 f) Define Exception.
 g) Define Anonymous Methods.
 h) Define delegate.
 i) What is event?
 j) Difference between while and do-while.
 k) List pre-processor directives in C #.
 l) Define Collection.

UNIT I

2. a) Explain C# value types and program control statements with examples. 6M
 b) Write a program to display the Fibonacci series up to given number N in C# . 6M

(OR)
3. a) Explain the three pillars of object-oriented programming in C#? 6M
 b) Define Array. Explain the syntax to declare, initialize and access elements from the following array

types with an example.
 i. Single Dimensional Array. ii. Jagged Array

6M

UNIT II

4. a) Explain inheritance in C# with an example. 6M

 b) Explain interface concept with an example. 6M
(OR)

5. a) Write a short note on enumeration and explain its usage with an example. 6M
 b) Explain overloading operators in C# with an example to overload operators +, -, *, > and < 6M

UNIT III

6. a) Write a short notes on a) Console I/O b) Stream class 6M
 b) Write a C # Program to demonstrate the use of FileStream Classes. 6M

(OR)
7. a) Write a C# program to compute and display sum, difference, and multiplication of twonumbers by

writing appropriate methods which could be called through multicast delegate methodof
programming.

12M

UNIT IV

8. a) What is namespace? Explain the purpose of namespace with an example. 6M
 b) Write a c# program using a generic class with two type parameters. 6M

(OR)
9. a) Describe properties and methods of ArrayList Class with example program. 6M
 b) Explain the C# pre-processor directives with examples. 6M

Page 2 of 21

1. Answer all questions (1X12=12 Marks)
 a) What is Encapsulation?
 Encapsulation is a programming mechanism that binds together code and the data it manipulates,

and that keeps both safe from outside interference and misuse.
 b) What is Polymorphism?
 Polymorphism (from Greek, meaning “many forms”) is the quality that allows one interface to

access a general class of actions.
 c) Differentiate value types and reference types.
 Value Type holds the data within its own memory allocation.

Reference Type contains a pointer to another memory location that holds the real data
 d) List various operators that cannot be overloaded.
 &&, ||, [], (T)x(Typecast operator), +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=, as, checked,

unchecked, default, delegate, is, new, sizeof, typeof
Give full marks for any four operators.

 e) Write the uses of super keyword.
 1. The base keyword is used to access members of the base class from within a derived

class.
2. Specify which base-class constructor should be called when creating instances of the

derived class.
 f) Define Exception.
 An exception is an error that occurs at runtime.
 g) Define Anonymous Methods.
 An anonymous method is an unnamed block of code that is associated with a specific delegate

instance. An anonymous method is created by following the keyword delegate with a block of
code.

 h) Define delegate.
 A delegate is an object that can refer to a method.
 i) What is event?
 An event is, essentially, an automatic notification that some action has occurred in object.
 j) Difference between while and do-while.
 While is an entry controlled loop, means test condition is checked before entering the loop body

Do-While is an exit controlled loop, means test condition is checked after executing the loop
body

 k) List pre-processor directives in C #.
 #define, #undef, #if, #else, #elif, #endif, #line, #error, #warning, #region, #endregion

Give full marks for any four directives.
 l) Define Collection.
 A collection is a group of objects.

UNIT I

2. a) Explain C# value types and program control statements with examples. 6M
 Value Types - 2M Program Control Statements - 4M

Value type variables can be assigned a value directly. They are derived from the
class System.ValueType.

Page 3 of 21

The value types directly contain data. Some examples are int, char, and float, which stores
numbers, alphabets, and floating point numbers, respectively. When you declare an int type, the
system allocates memory to store the value.
The following table lists the available value types in C#

Type Represents

bool Boolean value

byte 8-bit unsigned integer

char 16-bit Unicode character

decimal
128-bit precise decimal
values with 28-29 significant
digits

double
64-bit double-precision
floating point type

float
32-bit single-precision
floating point type

int 32-bit signed integer type

long 64-bit signed integer type

sbyte 8-bit signed integer type

short 16-bit signed integer type

uint 32-bit unsigned integer type

ulong 64-bit unsigned integer type

ushort 16-bit unsigned integer type

 Program Control Statements:

Program Control statements are used to controls the flow of the execution. The flow of control
means the order in which a program’s statements are executed.
Control statements are classified into three categories, those are

1. Selection statements - if and switch
2. Loop statements - while, do-while, for, foreach
3. Jump statements - break, continue

Selection statements:
Simple if
An if statement consists of a boolean expression followed by one or more statements.

Page 4 of 21

syntax
if(condition) statement;
if-else:
An if statement can be followed by an optional else statement, which executes when the
boolean expression is false.
Syntax:
if(condition) {
 statement sequence
}
 else {
 statement sequence
}
Nested if-else:
You can use one if or else if statement inside another if or else ifstatement(s).
Syntax:
if(condition) {
 if(condition) statement;
}
 else {
 statement sequence
}
switch statement:
A switch statement allows a variable to be tested for equality against a list of values.
Syntax:
switch(expression) {
 case constant1: statement sequence break;
 case constant2: statement sequence break;
 case constant3: statement sequence break;
 .
 .
 .
 default: statement sequence break;
}
NOTE: Consider any valid example

Loop Statements:
while loop
It repeats a statement or a group of statements while a given condition is true. It tests the
condition before executing the loop body.
Syntax:
while(condition){
 statement;
}
do...while loop:
It is similar to a while statement, except that it tests the condition at the end of the loop body

Page 5 of 21

Syntax:
do {
 statements;
} while(condition);

for loop:
It executes a sequence of statements multiple times and abbreviates the code that manages the
loop variable.
Syntax:
for(initialization; condition; iteration) {
 statement sequence
}
foreach loop:
it is used to iterate through arrays or collections
Syntax:
foreach(type t in array) {
 statement sequence
}
NOTE: Consider any valid example
Jump statements:
break statement:
Terminates the loop or switch statement and transfers execution to the statement immediately
following the loop or switch.
continue statement:
Causes the loop to skip the remainder of its body and immediately retest its condition prior to
reiterating.
NOTE: Consider any valid example

 b) Write a program to display the Fibonacci series up to given number N in C# . 6M
 using System;

class Fibonacci{
 static void Main(){
 int i, n, t1 = 0, t2 = 1, t3 = 0;
 Console.Write("Enter the value of n: ");
 n = int.Parse(Console.ReadLine());
 Console.WriteLine(t1);
 Console.WriteLine(t2);
 for (i = 0; i <= n; i++)
 {
 t3 = t1 + t2;
 Console.WriteLine(t3);
 t1 = t2;
 t2 = t3;
 }
 }
}
Note: Any relevant program may also be considered

6M

Page 6 of 21

(OR)
3. a) Explain the three pillars of object-oriented programming in C#? 6M
 The three Object Oriented Programming features are:

 Encapsulation

 Inheritance

 Polymorphism
Encapsulation:
Encapsulation binds together code and the data it manipulates and keeps them both safe from
outside interference and misuse. Encapsulation is a protective container that prevents code and
data from being accessed by other code defined outside the container.

Inheritance:
Inheritance is the process by which one object acquires the properties of another object. A type
derives from a base type, taking all the base type members fields and functions. Inheritance is
most useful when you need to add functionality to an existing type. For example all .NET classes
inherit from the System.Object class, so a class can include new functionality as well as use the
existing object's class functions and properties as well.

Polymorphism:
Polymorphism is a feature that allows one interface to be used for a general class of action. This
concept is often expressed as "one interface, multiple actions". The specific action is determined
by the exact nature of circumstances.

 b) Define Array. Explain the syntax to declare, initialize and access elements from the
followingarray types with an example.
 i. Single Dimensional Array. ii. Jagged Array

6M

 Array:
An array is a data structure that contains several variables of the same type.
An Array has the following properties

 An array can be Single-Dimensional, Multidimensional or Jagged.
 The default value of numeric array elements are set to zero, and reference elements are

set to null.
 A jagged array is an array of arrays, and therefore its elements are reference types and are

initialized to null.
 Arrays are zero indexed: an array with n elements is indexed from 0 to n-1.
 Array elements can be of any type, including an array type.
 Array types are reference types derived from the abstract base type Array.

Single Dimensional Array: 3M
Syntax:
Declaration:
type[] array-name = new type[size];
Initialization:
type[] array-name = { val1, val2, val3, ..., valN }; or
int[] nums = new int[] { 99, 10, 100, 18, 78, 23, 63, 9, 87, 49 }; or
int[] nums; nums = new int[] { 99, 10, 100, 18, 78, 23, 63, 9, 87, 49 }; or
int[] nums = new int[10] { 99, 10, 100, 18, 78, 23, 63, 9, 87, 49 };or
int[] nums = new int[10];

2M

2M

2M

1M

Page 7 of 21

nums[0]=1;nums[1]=20];...
Access:
Array-name[index];
Example:
using System;
class OneDArray{
 static double Mean(int[] numbers,int noofele){
 int sum=0;
 for(int i=0;i<noofele;i++){
 sum=sum+numbers[i];
 }
 return ((sum*1.0)/(noofele*1.0));
 }
 static void Main(){
 int[] numbers=new int[10];
 for(int i=0;i<10;i++){
 Console.Write("numbers["+i+"]=");
 numbers[i]=int.Parse(Console.ReadLine());
 }
 double mean=Mean(numbers,10);
 Console.WriteLine("Mean of numbers is:"+mean);
 }
}
Note: Any relevant program may also be considered
Single Dimensional Array: 2M
Syntax:
Declaration:
type[] [] array-name = new type[size][];
arrayname[0]=new type[size];
arrayname[1]=new type[size];
arrayname[2]=new type[size]; ...
Initialization:
type[] [] array-name = new type[size][];
arrayname[0]=new type[size]{elements};
Access:
Array-name[index][index];
Example:
using System;
class JaggedArray{
 static void Main(){
 int[][] ja = new int[3][];
 ja[0]=new int[3];
 ja[1]=new int[2];
 ja[2]=new int[1];
 for(int r=0;r<3;r++){
 for(int c=0;c<ja[r].Length;c++)

Page 8 of 21

 ja[r][c]=int.Parse(Console.ReadLine());
 }
 for(int r=0;r<ja.Length;r++){
 for(int c=0;c<ja[r].Length;c++){
 Console.Write(ja[r][c]);
 }
 Console.WriteLine();
 }
 }
}

UNIT II

4. a) Explain inheritance in C# with an example. 6M

 Inheritance:
Inheritance is the process by which one object can acquire the properties of another object.
C# supports three types of inheritance

 Single/Simple

 Multilevel

 Hierarchical
Simple/Single inheritance:
One subclasse inherit the features of one superclass (base class).
Multilevel:
a subclass is inherited from another subclass.
Hierarchical:
one class serves as a superclass (base class) for more than one sub class.

Example: Note: Any relevant program may also be considered 3M

using System;
abstract class BankAccount{
 public String accNo,branch;
 public double ir;
 public decimal bal;

3M

Page 9 of 21

 public BankAccount(){
 accNo="";
 branch="";
 ir=0.0;
 bal=0.0m;
 }
 public BankAccount(String ano,String br,double i,decimal b){
 accNo=ano;
 branch=br;
 ir=i;
 bal=b;
 }
 abstract public decimal Withdraw(decimal amt);
 public void Deposit(decimal amt){
 bal=bal+amt;
 }
 public virtual String GetType(){
 return "Bank Account";
 }
}
class SBAccount:BankAccount{
 public String accHolderName,accHolderAddress;
 public decimal minBal;
 public SBAccount(String ano,String br,double i,decimal b,String an,String
aa,decimal mb):base(ano,br,i,b){
 accHolderName=an;
 accHolderAddress=aa;
 minBal=mb;
 }

 sealed public override decimal Withdraw(decimal amt){
 if(bal-amt>=minBal){
 bal-=amt;
 return bal;
 }
 return -1;
 }
 public virtual String GetType(){
 return "Savings Bank Account";
 }
}
class CBAccount:BankAccount{
 public String accOrgName,accOrgAddress;
 public decimal overdrawLimit;
 public CBAccount(String ano,String br,double i,decimal b,String an,String
aa,decimal ol):base(ano,br,i,b){

Page 10 of 21

 accOrgName=an;
 accOrgAddress=aa;
 overdrawLimit=ol;
 }
 public override decimal Withdraw(decimal amt){
 if(bal-amt>=overdrawLimit){
 bal-=amt;
 return bal;
 }
 return -1;
 }
 public virtual String GetType(){
 return "Current Bank Account";
 }
}
class BankAccountsDemo{
 static void Main(){
 //BankAccount o=new BankAccount();
 //o.Withdraw(1000.0m);
 BankAccount sb=new SBAccount("12345667890","SBI
BEC",4.0,5000.0m,"asdfghjkl","zxcvbnm",500.0m);
 if(sb.Withdraw(500)!=-1)
 Console.WriteLine("Balance after Withdraw:"+sb.bal);
 else
 Console.WriteLine("Insuuficiant funds");
 if(sb.Withdraw(6700)!=-1)
 Console.WriteLine("Balance after Withdraw:"+sb.bal);
 else
 Console.WriteLine("Insuuficiant funds");
 BankAccount cb=new CBAccount("12345667890","SBI
BEC",4.0,5000.0m,"asdfghjkl","zxcvbnm",500.0m);
 cb.Deposit(1000m);
 if(cb.Withdraw(500)!=-1)
 Console.WriteLine("Balance after Withdraw:"+cb.bal);
 else
 Console.WriteLine("Insuuficiant funds");
 if(cb.Withdraw(6700)!=-1)
 Console.WriteLine("Balance after Withdraw:"+cb.bal);
 else
 Console.WriteLine("Insuuficiant funds");

 }

}

Page 11 of 21

 b) Explain interface concept with an example. 6M
 An interface contains only the signatures of methods, properties, events or indexers. A class or

struct that implements the interface must implement the members of the interface that are
specified in the interface definition.
Defining interface:
interface name {
 ret-type method-name1(param-list);
 ret-type method-name2(param-list);
 // ...
 ret-type method-nameN(param-list);
}
Implementing interface:
class class-name : interface-name {
 // class-body
}
Example: Note: Any relevant program may also be considered 3M
public interface ISeries {
 int GetNext(); // return next number in series
 void Reset(); // restart
 void SetStart(int x); // set starting value
}
class ByTwos : ISeries {
 int start;
 int val;
 public ByTwos() {
 start = 0;
 val = 0;
 }
 public int GetNext() {
 val += 2;
 return val;
 }
 public void Reset() {
 val = start;
 }
 public void SetStart(int x) {
 start = x;
 val = start;
 }
}

// Demonstrate the ISeries interface.
using System;
class SeriesDemo {
 static void Main() {
 ByTwos ob = new ByTwos();

3M

Page 12 of 21

 for(int i=0; i < 2; i++)
 Console.WriteLine("Next value is " + ob.GetNext());
 Console.WriteLine("\nResetting");
 ob.Reset();
 for(int i=0; i < 2; i++)
 Console.WriteLine("Next value is " + ob.GetNext());
 Console.WriteLine("\nStarting at 100");
 ob.SetStart(100);
 for(int i=0; i < 2; i++)
 Console.WriteLine("Next value is " + ob.GetNext());
 }
}

(OR)
5. a) Write a short note on enumeration and explain its usage with an example. 6M
 An enumeration is a set of named integer constants. The keyword enum declares an enumerated

type. The general form for an enumeration is
enum name { enumeration list };
Example: Note: Any relevant program may also be considered
using System;
class EnumEx{
 enum grades{O,AP,A,BP,B,C,F};
 static void FindGrade(int marks){
 if(marks>=90)
 Console.WriteLine((int)grades.O);
 else if(marks>=80)
 Console.WriteLine(grades.AP);
 else if(marks>=70)
 Console.WriteLine(grades.A);
 else if(marks>=60)
 Console.WriteLine(grades.BP);
 else if(marks>=50)
 Console.WriteLine(grades.B);
 else if(marks>=40)
 Console.WriteLine(grades.C);
 else{
 int g=(int)grades.F;
 Console.WriteLine((grades)3);
 }
 }
 static void Main(){
 FindGrade(90);
 FindGrade(20);
 }
}

4M

2M

Page 13 of 21

 b) Explain overloading operators in C# with an example to overload operators +, -, *, >
and <

6M

 Note: Any relevant program may also be considered 6M
using System;
class ThreeDPoint{
 int x,y,z;
 public ThreeDPoint(){
 x=y=z=0;
 }
 public ThreeDPoint(int i,int j,int k){
 x=i;y=j;z=k;
 }
 public void Show(){
 Console.WriteLine("("+x+","+y+","+z+")");
 }
 public static ThreeDPoint operator +(ThreeDPoint p1,ThreeDPoint p2){
 ThreeDPoint p3=new ThreeDPoint();
 p3.x=p1.x+p2.x;
 p3.y=p1.y+p2.y;
 p3.z=p1.z+p2.z;
 return p3;
 }
 public static ThreeDPoint operator -(ThreeDPoint p1,ThreeDPoint p2){
 ThreeDPoint p3=new ThreeDPoint();
 p3.x=p1.x-p2.x;
 p3.y=p1.y-p2.y;
 p3.z=p1.z-p2.z;
 return p3;
 }
 public static ThreeDPoint operator *(ThreeDPoint p1,ThreeDPoint p2){
 ThreeDPoint p3=new ThreeDPoint();
 p3.x=p1.x*p2.x;
 p3.y=p1.y*p2.y;
 p3.z=p1.z*p2.z;
 return p3;
 }
 public static bool operator <(ThreeDPoint p1,ThreeDPoint p2){
 return
Math.Sqrt(p1.x*p1.x+p1.y*p1.y+p1.z*p1.z)<Math.Sqrt(p2.x*p2.x+p2.y*p2.y+p2.z*p2.z);
 }
 public static bool operator >(ThreeDPoint p1,ThreeDPoint p2){
 return
Math.Sqrt(p1.x*p1.x+p1.y*p1.y+p1.z*p1.z)>Math.Sqrt(p2.x*p2.x+p2.y*p2.y+p2.z*p2.z);
 }

}

Page 14 of 21

class ThreeDPointDemo{
 static void Main(){
 ThreeDPoint p1=new ThreeDPoint();
 Console.WriteLine("Point p1 is:");
 p1.Show();
 ThreeDPoint p2=new ThreeDPoint(10,20,30);
 Console.WriteLine("Point p2 is:");
 p2.Show();

 ThreeDPoint p3=p2+p1;
 Console.WriteLine("p1+p2=");
 p3.Show();
 p3=p2-p1;
 Console.WriteLine("p1-p2=");
 p3.Show();
 p3=p2*p1;
 Console.WriteLine("p1*p2=");
 p3.Show();
 Console.WriteLine("p1<p2"+(p1<p2));
 Console.WriteLine("p1>p2"+(p1>p2));
 }
}

UNIT III

6. a) Write a short notes on a) Console I/O b) Stream class 6M
 Console I/O is accomplished through the standard streams Console.In, Console.Out, and

Console.Error.

Reading Console Input
Console.In is an instance of TextReader, and you can use the methods and properties defined by
TextReader to access it. However, you will usually use the methods provided by Console, which
automatically read from Console.In. Console defines three input methods. The first two, Read()
and ReadLine(), have been available since .NET Framework 1.0. The third, ReadKey(), was
added by .NET Framework 2.0.

Writing Console Output
Console.Out and Console.Error are objects of type TextWriter. Console output is most easily
accomplished with Write() and WriteLine(), with which you are already familiar. Versions of
these methods exist that output each of the built-in types. Console defines its own versions of
Write() and WriteLine() so they can be called directly on Console, as you have been doing
throughout this book. However, you can invoke these (and other) methods on the TextWriter that
underlies Console.Out and Console.Error, if you choose.

Stream class: 3M
The core stream class is System.IO.Stream. Stream represents a byte stream and is a base class
for all other stream classes. It is also abstract, which means that you cannot instantiate a Stream

3M

Page 15 of 21

object. Stream defines a set of standard stream operations. Following table shows several
commonly used methods defined by Stream. Several of the methods shown in following table
will throw an IOException if an I/O error occurs. If an invalid operation is attempted, such as
attempting to write to a stream that is read-only, a NotSupportedException is thrown. Other
exceptions are possible, depending on the specific method.

To determine the capabilities of a stream, you will use one or more of Stream’s properties. They
are shown in Following table. Also shown are the Length and Position properties, which contain
the length of the stream and its current position.

 b) Write a C # Program to demonstrate the use of FileStream Classes. 6M
 Note: Any relavent program may also be considered 6M

using System;
using System.IO;
class FileCopy{
 static void Main(String[] args){
 FileStream fs1,fs2;

Page 16 of 21

 int ch;
 if(args.Length<2){
 Console.WriteLine("Error\nUsage:ProgramName File1 File2");
 return;
 }
 try{
 fs1=new FileStream(args[0],FileMode.Open,FileAccess.Read);
 fs2=new FileStream(args[1],FileMode.Create,FileAccess.Write);
 while((ch=fs1.ReadByte())!=-1){
 fs2.WriteByte((byte)ch);
 }
 fs1.Close();
 fs2.Close();
 }catch(FileNotFoundException ex){
 Console.WriteLine("File is Not Existed:\n"+ex);
 }catch(IOException ex){
 Console.WriteLine("IO Failure:\n"+ex);
 }catch(Exception ex){
 Console.WriteLine("General Exception:\n"+ex);
 }
 }
}

(OR)
7. Write a C# program to compute and display sum, difference, and multiplication of

two numbers by writing appropriate methods which could be called through
multicast delegate method of programming.

12M

 Note: Any relevant program may also be considered 12M
using System;
delegate void ArithmaticOperations(int n1,int n2);
class MulticastDelegateExample
{
 static string result = "";
 public static void Sum(int n1, int n2) {
 result += "sum of" + n1 + "," + n2 + "=" + (n1 + n2);
 }
 public static void Difference(int n1, int n2)
 {
 result += "\nDifference between" + n1 + "," + n2 + "=" + (n1 - n2);
 }
 public static void Product(int n1, int n2)
 {
 result += "\nProduct of" + n1 + "," + n2 + "=" + (n1 * n2);
 }
 static void Main(string[] args)
 {
 ArithmaticOperations ao=Sum;

Page 17 of 21

 ao += Difference;
 ao += Product;
 ao(10, 20);
 Console.WriteLine(result);
 }
}

UNIT IV

8. a) What is namespace? Explain the purpose of namespace with an example. 6M
 A namespace defines a declarative region that provides a way to keep one set of names separate

from another. In essence, names declared in one namespace will not conflict with the same
names declared in another. The namespace used by the .NET Framework library (which is the C#
library) is System. This is why you have included using System;
Example: Note: Any relevant program may also be considered 4M
//Shapes.cs which contains Circle and Rectangle classes under the name space Shapes
using System;
namespace Shapes{
 class Circle{
 int radius;
 public Circle(int r){
 radius=r;
 }
 public void Area(){
 Console.WriteLine("Area is:"+(3.14*radius*radius));
 }
 }
 class Rectangle{
 int length,breadth;
 public Rectangle(int l,int b){
 length=l;
 breadth=b;
 }
 public void Area(){
 Console.WriteLine("Area is:"+(length*breadth));
 }
 }
}

//Shapes1.cs which contains same Circle and Rectangle classes under the name space Shapes1
using System;
namespace Shapes1{
 class Circle{
 int radius;
 public Circle(int r){
 radius=r;
 }

2M

Page 18 of 21

 public void Area(){
 Console.WriteLine("Area is:"+(3.14*radius*radius));
 }
 }
 class Rectangle{
 int length,breadth;
 public Rectangle(int l,int b){
 length=l;
 breadth=b;
 }
 public void Area(){
 Console.WriteLine("Area is:"+(length*breadth));
 }
 }
}
using Shapes;
class Demo{
 static void Main(){
 Circle c=new Circle(5);
 c.Area();
 Rectangle r=new Rectangle(5,5);
 r.Area();
 }
}

 b) Write a c# program using a generic class with two type parameters. 6M
 Note: Any relevant program may also be considered 6M

// A simple generic class with two type parameters: T and V.
using System;
class TwoGen<T, V> {
 T ob1;
 V ob2;
 // Notice that this constructor has parameters of type T and V.
 public TwoGen(T o1, V o2) {
 ob1 = o1;
 ob2 = o2;
 }
 // Show types of T and V.
 public void showTypes() {
 Console.WriteLine("Type of T is " + typeof(T));
 Console.WriteLine("Type of V is " + typeof(V));
 }
 public T getob1() {
 return ob1;
 }
 public V GetObj2() {
 return ob2;

Page 19 of 21

 }
}
// Demonstrate two generic type parameters.
class SimpGen {
 static void Main() {
 TwoGen<int, string> tgObj =
 new TwoGen<int, string>(119, "Alpha Beta Gamma");
 // Show the types.
 tgObj.showTypes();
 // Obtain and show values.
 int v = tgObj.getob1();
 Console.WriteLine("value: " + v);
 string str = tgObj.GetObj2();
 Console.WriteLine("value: " + str);
 }
}

(OR)
9. a) Describe properties and methods of ArrayList Class with example program. 6M
 Note: Any relevant program may also be considered 6M

using System;
using System.Collections;
class ArrayListDemo
{
 static void Print(ArrayList Countries)
 {
 for(int i=0;i<Countries.Count;i++)
 Console.Write(Countries[i]+" ");
 Console.WriteLine();
 }
 static void Main()
 {
 ArrayList Countries=new ArrayList();
 Countries.Add("India");
 Countries.Add("Indonesia");
 Countries.Add("Argentina");
 Countries.Add("FinLand");
 Countries.Add("Kenya");
 Countries.Add("Brazil");
 Countries.Add("Bangladesh");
 Countries.Add("NewZealand");
 Countries.Add("England");
 Countries.Add("Srilanka");
 Countries.Add("Pakistan");
 Print(Countries);
 foreach(String c in Countries)
 Console.Write(c+" ");

Page 20 of 21

 Console.WriteLine();
 IEnumerator en=Countries.GetEnumerator();
 while(en.MoveNext())
 Console.Write(en.Current+" ");
 Console.WriteLine();
 Countries.RemoveAt(1);
 //Countries.Remove("France");
 Countries.Insert(0,"America");
 for(int i=0;i<Countries.Count;i++)
 Console.Write(Countries[i]+" ");
 Console.WriteLine();
 if(Countries.Contains("Brazil"))
 Console.WriteLine("Brazil is Present");
 int k=Countries.IndexOf("England");
 Console.WriteLine("England is present at "+k);
 Countries.Sort();
 Print(Countries);
 k=Countries.BinarySearch("England");
 Console.WriteLine("England is Present at "+k);
 Countries.Reverse();
 Print(Countries);
 ArrayList clist=Countries.GetRange(2,5);
 Print(clist);
 String[] someCountries=new String[4];
 Countries.CopyTo(2,someCountries,0,4);
 for(int i=0;i<someCountries.Length;i++)
 Console.Write(someCountries[i]+" ");
 Console.WriteLine();
 Countries.RemoveRange(0,5);
 Print(Countries);
 }
}

 b) Explain the C# pre-processor directives with examples. 6M
 he following table lists the preprocessor directives available in C# −

SNO Preprocessor Directive & Description

1 #define
It defines a sequence of characters, called symbol.

2 #undef
It allows you to undefine a symbol.

3 #if
It allows testing a symbol or symbols to see if they evaluate to true.

Page 21 of 21

4 #else
It allows to create a compound conditional directive, along with #if.

5 #elif
It allows creating a compound conditional directive.

6 #endif
Specifies the end of a conditional directive.

7 #line
It lets you modify the compiler's line number and (optionally) the file name output
for errors and warnings.

8 #error
It allows generating an error from a specific location in your code.

9 #warning
It allows generating a level one warning from a specific location in your code.

10 #region
It lets you specify a block of code that you can expand or collapse when using the
outlining feature of the Visual Studio Code Editor.

11 #endregion
It marks the end of a #region block.

Example: Note: Any relevant program may also be considered
#define PI
using System;
namespace PreprocessorDAppl {
 class Program {
 static void Main(string[] args) {
 #if (PI)
 Console.WriteLine("PI is defined");
 #else
 Console.WriteLine("PI is not defined");
 #endif
 Console.ReadKey();
 }
 }
}

